Background: Echinacea is widely used to treat the common cold.

Objective: To assess the potential benefits of echinacea as a treatment of common cold.

Design: Randomized, controlled trial. (ClinicalTrials.gov registration number: NCT00065715)

Setting: Dane County, Wisconsin.

Patients: 719 patients, aged 12 to 80 years, with new-onset common cold.

Intervention: Patients were assigned to 1 of 4 parallel groups: no pills, placebo pills (blinded), echinacea pills (blinded), or echinacea pills (unblinded, open-label). Echinacea groups received the equivalent of 10.2 g of dried echinacea root during the first 24 hours and 5.1 g during each of the next 4 days. Indistinguishable placebo tablets contained only inert ingredients.

Measurements: The primary outcome was the area under the curve for global severity, with severity assessed twice daily by self-report using the Wisconsin Upper Respiratory Symptom Survey, short version. Secondary outcomes included interleukin-8 levels and neutrophil counts were also not statistically significant (30 ng/L and 1 cell/high-power field [hpf] in the no-pill group, 39 ng/L and 1 cell/hpf in the blinded placebo group).

Results: Of the 719 patients enrolled, 713 completed the protocol. Mean age was 33.7 years, 64% were female, and 88% were white. Mean global severity was 236 and 258 for the blinded and unblinded echinacea groups, respectively; 264 for the blinded placebo group; and 286 for the no-pill group. A comparison of the 2 blinded groups showed a 28-point trend (95% CI, −69 to 13 points) toward benefit for echinacea (P = 0.089). Mean illness duration in the blinded and unblinded echinacea groups was 6.34 and 6.76 days, respectively, compared with 6.87 days in the blinded placebo group and 7.03 days in the no-pill group. A comparison of the blinded groups showed a nonsignificant 0.53-day (CI, −1.25 to 0.19 days) benefit (P = 0.075). Median change in interleukin-8 levels and neutrophil counts from nasal wash, assessed at intake and 2 days later.

Conclusion: Illness duration and severity were not statistically significant with echinacea compared with placebo. These results do not support the ability of this dose of the echinacea formulation to substantively change the course of the common cold.

Primary Funding Source: National Center for Complementary and Alternative Medicine, National Institutes of Health.

See also:
Print
Editors’ Notes ........................................ 770
Summary for Patients ................................ 1-43
Web-Only
Appendix Table
Appendix Figure
Conversion of graphics into slides

© 2010 American College of Physicians
Echinacea is a popular nonprescription treatment for the common cold. The efficacy of echinacea in this regard continues to be debated after hundreds of studies.

**Context**

Echinacea is a popular nonprescription treatment for the common cold. The efficacy of echinacea in this regard continues to be debated after hundreds of studies.

**Contribution**

In this randomized, controlled trial, a minor, nonstatistically significant decrease in illness duration and severity was found in participants who received either blinded or open-label echinacea compared with those who received blinded placebo or no pills.

**Caution**

Higher-than-expected variability in the natural history of cold episodes may have limited the power of this study to demonstrate treatment differences.

**Implication**

This study is unlikely to change the debate on the efficacy of echinacea in treating the common cold.

---

pophilic constituents, such as alkamides. Other potentially active constituents, such as echinacoside; cynarin; and caffic, caftaric, cichoric, and chlorogenic acids, are found in various concentrations among the different formulations. When we designed this study in 2002, we decided to use a root-based, alkamide-rich preparation. Research published since that time (32–38) has tended to support our decision.

Several hundred scientific studies on echinacea, including a dozen randomized trials that tested echinacea for preventing or treating the common cold (39), had already been published by the mid-1990s, when echinacea had become popular in the United States. Nearly all of these early trials reported either statistically significant benefit or trends toward benefit (40). However, all were manufacturer-sponsored and of moderate to poor quality. In this context, we found it necessary to conduct our own trial from 1999 to 2000 (41), which yielded negative results. Several new trials have been published since then, some with positive results (42–44) and some with negative results (45–48). Systematic reviews and meta-analyses have varied in their inclusion criteria, review methods, results, and interpretation (49–53). We designed and conducted this trial because the effectiveness of echinacea was still unclear.

**Methods**

We asked 3 independent research questions, a somewhat unconventional approach. First, are there placebo effects associated with blinded versus open-label pills? Second, do physician–patient interactions influence cold outcomes? Finally, are there effects attributable specifically to echinacea, as assessed by blinded comparison? This study addresses the third question; studies that address the first 2 questions will be published elsewhere.

Our trial used a 2-way factorial design, in which participants were randomly assigned to receive no, standard, or enhanced clinical interaction in one direction (33.3% chance) and to receive no pills, placebo (blinded), echinacea (blinded), or open-label echinacea (unblinded) in the other direction (25% chance). Details of our rationale and methods have been published elsewhere (54).

**Setting and Participants**

Our study was conducted at 2 sites in Dane County, Wisconsin. Study promotion included newspaper advertising, posters, community talks, targeted mailings, e-mails, and word of mouth. Prospective participants called an advertised telephone number and were screened for eligibility. Those who were eligible were met in person for informed consent, following procedures approved by the University of Wisconsin (UW) institutional review board. After giving consent, participants rated themselves on several self-report questionnaires. An envelope was then opened to reveal allocation to a no-pill, blinded pill, or open-label echinacea group. Participants received their first dose of pills at the consent visit. Participants self-rated symptoms twice daily until their colds had resolved, up to a maximum of 14 days. Nasal wash, collected at enrollment and 2 days later, was analyzed for interleukin-8 (IL-8) levels and neutrophil counts (55–58). Participants were met for an exit interview after their illness had resolved.

**Inclusion and Exclusion Criteria**

Prospective participants were required to answer "yes" to either, "Do you think that you have a cold?" or "Do you think you are coming down with a cold?" Symptoms had to start within 36 hours before enrollment. Using Jackson and colleagues’ criteria (59), participants had to report at least 1 of nasal discharge, nasal obstruction, sneezing, or sore throat (the other 4 Jackson criteria symptoms are headache, malaise, chilliness, and cough). Participants needed a total Jackson score of 2 or higher, after summing the scores for each symptom on a scale of 0 (absent), 1 (mild), 2 (moderate), or 3 (severe). Prospective participants had to be 12 years or older; those aged 12 to 17 years required parental permission. Participants receiving antibiotics, antivirals, nasal steroids, decongestants, antihistamines, combination cold formulas, echinacea, zinc, or vitamin C were excluded, as were those with a history of allergic rhinitis who reported sneezing or itching of the nose or eyes and those with a history of asthma who reported current cough, wheezing, or shortness of breath (to avoid confounding from allergy or asthma symptoms). Participants who self-reported having autoimmune or immune deficiency disease or being pregnant were also excluded.

**Random Assignment, Allocation, and Blinding**

We used SAS (SAS Institute, Cary, North Carolina) to generate a single block of 804 unique identification num-
bers so that each of 12 cells (3 clinician groups by 4 pill groups) was represented equally. Using these codes, the UW Hospitals Pharmaceutical Research Center Investigational Drug Service prepared consecutively numbered, sealed envelopes to direct allocation. An envelope-within-envelope strategy was used, so that group assignment would be revealed as soon as the participant gave consent and the research assistant opened the larger outer envelope. Allocation concealment for the 2 blinded pill groups was accomplished by using identical coated tablets and plastic pill bottles. For the two thirds of the sample who would see a clinician, a second, smaller envelope that directed allocation to a standard or enhanced visit group was opened by the study clinician before entering the examination room. The randomized allocation key was not shared with investigators until after all data were collected, entered, and cleaned and analysis strategies were determined. Blinding was tested at the exit interview by asking participants which group they thought they had been assigned to.

**Echinacea and Placebo**

The echinacea and identical placebo tablets were manufactured by MediHerb (Warwick, Queensland, Australia). Echinacea tablets contained the equivalent of 675 mg of *E. purpurea* root and 600 mg of *E. angustifolia* root, each standardized to 2.1 mg of alkamides. Tablet excipients included calcium acid phosphate, cellulose, silica, sodium starch glycolate, hypromellose, and magnesium stearate. Placebo and echinacea tablets contained the same proportions of inert ingredients and were covered with identical digestible coatings.

Participants received 2 tablets at enrollment, followed by 2-tablet doses 3 more times within 24 hours of enrollment. They then received 1 tablet 4 times per day for the next 4 days. Thus, each participant received the equivalent of 10.2 g of dried echinacea root during the first 24 hours and the equivalent of 5.1 g during each of the next 4 days.

**Outcomes and Follow-up**

We prospectively defined the primary outcome as the area under the curve for global severity, with duration and severity assessed twice daily by self-report. Duration began at enrollment and continued through the last time the participant answered “yes” to, “Do you think you still have a cold?” The date and time when questionnaires were completed was recorded, which allowed duration to be quantified as a continuous measure. To confirm that the illness had ended, the last “yes” answer to, “Do you think you still have a cold?” had to be followed by a “no” answer for 2 days in a row. We chose to limit monitoring to a maximum of 14 days to reduce potential bias from extended illnesses.

Illness severity was assessed twice daily by using the Wisconsin Upper Respiratory Symptom Survey, short version (WURSS-21), a validated illness-specific quality-of-life outcome instrument (60, 61). Items assess symptom severity and functional impairment, with a score of 1 considered to be very mild; 3, mild; 5, moderate; and 7, severe. The first item assesses overall illness severity, and the last item assesses change since the previous day. Summing scores on the intervening 19 items provides a global measure of illness severity. Summing across time points yields an area under the curve for global severity, which we calculated by using trapezoidal approximation.

Secondary outcomes included self-report on psychosocial questionnaires and biomarkers of immune response and inflammation. Self-report measures included general health-related quality of life, perceived stress, interpersonal support, optimism, and mood states. General health was assessed daily by using the Medical Outcomes Study Short Form-8 scale (62), a 24-hour recall version of the highly validated Medical Outcomes Study Short Form-36 scale. The Short Form-8 scale yields separate physical and mental health scores by using an item-weighted algorithm (62). General health was also assessed daily by using the Euro-Qol’s feeling thermometer (63). Perceived stress was assessed at baseline, day 3, and exit by using the 4-item Cohen Perceived Stress Scale (64–66) and daily by using a 100-mm visual analogue scale developed for this study. Interpersonal support and optimism were measured at baseline, day 3, and exit by using the Ryff Personal Relationships scale (67) and the revised Life Orientation Test (68).

**Adverse Effects and Safety Monitoring**

Although allergic reactions to echinacea have been reported, no major or dose-dependent risks for adverse effects are known (50). We assessed possible adverse effects by asking participants at the exit interview whether they had experienced bad taste, diarrhea, headache, nausea, rash, or stomach upset at any time during their illness. Participants were also asked open-ended questions about possible adverse effects at the day 3 follow-up visit and during telephone contact. A data safety and monitoring committee met once yearly to review enrollment and side effect data.

**Data Collection, Entry, and Cleaning**

Questionnaire booklets completed by participants were scanned into electronic files by the UW Educational Testing Service. Data collected during telephone monitoring were recorded on paper and hand-entered twice, with discrepancies resolved by comparison with the paper.

**Statistical Analysis**

Our trial was designed to have 80% power to detect a 20% between-group difference in the area under the curve for global severity. A priori power calculations were based on data collected with a predecessor instrument of the WURSS-21. Assuming an α of 0.05, β of 0.20, 1-sided testing, and proportionally stable standard deviations, the protocol required enrollment of 800 participants to achieve 720 protocol completers. Intervention groups were kept blinded during data cleaning, assessment of missingness and response, and initial descriptive analyses. To calculate
the area under the curve for global severity, we first averaged morning and evening scores for each item of the WURSS-21. If either morning or evening data were missing, existing data were used. Possible patterns of missingness for WURSS-21 items were assessed by using the Little’s test comparing median severity in the blinded placebo group and either the blinded echinacea group or no-pill group. A primary efficacy analysis that compared global severity in the blinded echinacea and placebo groups yielded a mean difference of 28 points (95% CI, 1.34 to 1.70). Statistical testing yielded a T of 1.34 (P = 0.089). Because of skewness, the Mann–Whitney U test comparing median severity in the blinded placebo group with that in the blinded echinacea group may be more appropriate (206 vs. 193; z = 0.97; P = 0.170). Mean illness duration in the blinded and unblinded echinacea groups was 6.34 and 6.76 days, respectively, compared with 6.87 days in the blinded placebo group and 6.34 days in the no-pill group. A primary efficacy analysis that compared illness duration was lower in the blinded and open-label echinacea groups than in either the blinded placebo or no-pill groups (Table 2).

Table 1. Baseline Characteristics of Participants

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>All (n = 719)</th>
<th>No-Pill Group (n = 174)</th>
<th>Unblinded Echinacea Group (n = 182)</th>
<th>Blinded Placebo Group (n = 179)</th>
<th>Blinded Echinacea Group (n = 184)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (SD), y</td>
<td>33.7 (14.4)</td>
<td>32.3 (14.2)</td>
<td>33.9 (14.5)</td>
<td>33.2 (13.5)</td>
<td>35.4 (15.3)</td>
</tr>
<tr>
<td>Women, %</td>
<td>64.1</td>
<td>60.9</td>
<td>65.9</td>
<td>63.7</td>
<td>65.8</td>
</tr>
<tr>
<td>Nonwhite, %</td>
<td>12.1</td>
<td>13.8</td>
<td>8.2</td>
<td>12.3</td>
<td>14.1</td>
</tr>
<tr>
<td>Current smoker, %</td>
<td>12.8</td>
<td>14.4</td>
<td>11.6</td>
<td>11.2</td>
<td>14.1</td>
</tr>
<tr>
<td>Annual household income ≤ $25,000, %</td>
<td>35.9</td>
<td>40.4</td>
<td>32.6</td>
<td>35.7</td>
<td>35.1</td>
</tr>
<tr>
<td>At least some college education, %</td>
<td>84.0</td>
<td>84.0</td>
<td>86.4</td>
<td>85.6</td>
<td>80.0</td>
</tr>
<tr>
<td>Mean duration of symptoms before enrollment (SD), h</td>
<td>22.8 (8.6)</td>
<td>23.6 (8.0)</td>
<td>22.3 (9.2)</td>
<td>23.3 (8.5)</td>
<td>22.0 (8.5)</td>
</tr>
<tr>
<td>Mean WURSS-21 score at enrollment (SD)</td>
<td>85.4 (51.4)</td>
<td>84.3 (50.0)</td>
<td>82.9 (46.6)</td>
<td>89.8 (54.4)</td>
<td>84.7 (54.3)</td>
</tr>
<tr>
<td>Mean SF-8 physical health score (SD)</td>
<td>48.5 (6.1)</td>
<td>48.7 (6.2)</td>
<td>48.7 (5.5)</td>
<td>48.2 (6.1)</td>
<td>48.2 (6.6)</td>
</tr>
<tr>
<td>Mean SF-8 mental health score (SD)</td>
<td>43.5 (9.7)</td>
<td>42.7 (9.8)</td>
<td>43.7 (10.1)</td>
<td>43.4 (9.1)</td>
<td>44.3 (9.6)</td>
</tr>
</tbody>
</table>

SF-8 = Medical Outcomes Study Short Form-8; WURSS-44 = Wisconsin Upper Respiratory Symptom Survey, long version.

Results

Enrollment opened in January 2004 and ended in August 2008. Of the 3321 participants screened, 719 were enrolled and randomly assigned (Appendix Figure, available at www.annals.org). Retention was high. Two participants were lost to follow-up, and 4 withdrew before primary outcome data could be gathered; reasons given were “too sick or too busy to fill out questionnaires” and “desire to take nonprotocol medications.” Approximately 98% of intended data were collected. The largest data gap was with nasal wash, for which 33 participants either declined the second nasal wash or did not return within 24 to 72 hours after the first wash. The Little test showed no discernible patterns of missingness in the 0.27% of missing WURSS-21 items. Imputation of WURSS-21 items and calculation of global severity and duration values were done before unblinding, using the previously outlined methods.

Of the 719 participants, 64% were female, 88% were white, and 84% reported having at least some college education. Age ranged from 12 to 80 years (mean age, 33.7 years [SD, 14.4]). About 12.8% were current smokers. Baseline measures were similar across the 4 groups (Table 1). Five hundred twenty-two were enrolled in Madison and 197 in Verona, Wisconsin. No significant between-site differences were found for mean age (33.3 vs. 34.9 years; P = 0.20), sex (63.4% vs. 66.0% female; P = 0.52), or education level (84.6% vs. 82.3% with some college education; P = 0.47).

Primary Outcome

The average area under the curve for global severity and illness duration were lower in the blinded and open-label echinacea groups than in either the blinded placebo or no-pill groups (Table 2). Mean global severity was 236 and 258 for the blinded and unblinded echinacea groups, respectively; 264 for the blinded placebo group; and 286 for the no-pill group. A primary efficacy analysis that compared global severity in the blinded echinacea and placebo groups yielded a mean difference of 28 points (95% CI, −69 to 13 points). Statistical testing yielded a T of 1.34 (P = 0.089). Because of skewness, the Mann–Whitney U test comparing median severity in the blinded placebo group with that in the blinded echinacea group may be more appropriate (206 vs. 193; z = 0.97; P = 0.170). Mean illness duration in the blinded and unblinded echinacea groups was 6.34 and 6.76 days, respectively, compared with 6.87 days in the blinded placebo group and...
7.03 days in the no-pill group. An efficacy analysis that compared illness duration in the blinded echinacea group with that of the blinded placebo group yielded a mean difference of 0.53 day (CI, −1.25 to 0.19 days) and a T of 1.97 (P = 0.075). No statistically significant differences were found when the 2 blinded groups were compared by using a general linear model to control for potential confounders (P = 0.42 for area under the curve for severity; P = 0.74 for duration.) Box–Cox transformation was used for that model because the distribution of global severity was skewed. Reported P values are based on 1-sided testing and were not adjusted for multiple testing.

Because echinacea is thought to work through immune stimulation, which would make early dosing important, we did a subgroup analysis of the 351 people who were enrolled within 24 hours of their first symptom (Table 2). Compared with the no-pill or blinded placebo groups, both echinacea groups had lower illness duration and global severity; however, none of the between-group comparisons in this secondary analysis was statistically significant. Applying the general linear model did not significantly change the results and conclusions.

Secondary Outcomes

Analysis of secondary outcomes did not demonstrate effects clearly attributable to echinacea (Table 3). Nasal neutrophil counts and IL-8 levels in nasal wash tended to increase faster in the 2 echinacea groups than in either control group, but these differences were not statistically significant. Self-reported health measures, including those for physical and mental health (Medical Outcomes Study Short Form-8), stress (Cohen Perceived Stress Scale), optimism (revised Life Orientation Test), and social support (Ryff Personal Relationships scale) did not seem to be influenced by random assignment to echinacea.

Adverse Effects

Frequency of potential adverse effects was similar (statistically indistinguishable) in the 4 groups (Table 4). The only possible exception was headache, for which 62% of patients in the no-pill group reported having had a headache at some time during their illness, compared with fewer than 50% in the 3 pill groups. Responses to openspended questions about possible adverse effects during monitoring showed no patterns of adverse effects attributable to echinacea.

Adherence

Adherence to dosing regimen was assessed by asking participants, “Did you take all your pills as directed?” and by counting the pills in returned pill bottles. Of the 545 people who received pills, 518 (95%) reported taking the pills as directed. Of the 524 bottles returned, 486 (93%) were empty, 27 (5%) had 4 or fewer pills, and 11 (2%) had 5 or more pills left in the bottles. Nothing indicated that the patients who received echinacea took their pills differently from the patients who received placebo (Table 5).

Test of Blinding

Blinding seemed to be intact. Of the 363 participants who received pills and were blinded, 141 (39%) guessed their assignment correctly, 110 (30%) guessed incorrectly, and 107 (29%) declined to guess (Table 5). Of the 179 participants in the blinded placebo group, 72 (40%) correctly guessed their assignment, compared with 69 (38%) in the blinded echinacea group. A Fisher exact test of proportional difference that included only participants who were willing to guess their pill assignment yielded a P value of 0.053 (CI, −0.002 to 0.246). Although this does not allow us to reject the null and conclude blind-breaking, it

### Table 2. Primary Outcomes: Global Severity and Duration of Illness

<table>
<thead>
<tr>
<th>Sample</th>
<th>No-Pill Group</th>
<th>Unblinded Echinacea Group</th>
<th>Blinded Placebo Group</th>
<th>Blinded Echinacea Group</th>
<th>Between–Blinded Group Differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants providing main outcome data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participants, n</td>
<td>173</td>
<td>181</td>
<td>176</td>
<td>183</td>
<td>–</td>
</tr>
<tr>
<td>Median global severity (95% CI)</td>
<td>220 (189 to 238)</td>
<td>195 (169 to 213)</td>
<td>206 (177 to 256)</td>
<td>193 (163 to 218)</td>
<td>–13 (−37.8 to 38.4)</td>
</tr>
<tr>
<td>Mean global severity (SD)</td>
<td>286 (246)</td>
<td>258 (214)</td>
<td>264 (212)</td>
<td>236 (182)</td>
<td>–28 (−69.0 to 13.0)</td>
</tr>
<tr>
<td>Adjusted global severity (95% CI)*</td>
<td>10.3 (9.9 to 10.7)</td>
<td>10.1 (9.7 to 10.5)</td>
<td>10.0 (9.7 to 10.4)</td>
<td>10.1 (9.7 to 10.4)</td>
<td>0.10 (0.40 to 0.60)</td>
</tr>
<tr>
<td>Median duration (95% CI), d</td>
<td>6.42 (6.13 to 7.21)</td>
<td>6.16 (5.31 to 6.60)</td>
<td>6.47 (5.82 to 7.12)</td>
<td>6.04 (5.30 to 6.53)</td>
<td>–0.43 (−1.01 to 0.95)</td>
</tr>
<tr>
<td>Mean duration (SD), d</td>
<td>7.03 (3.49)</td>
<td>6.76 (3.48)</td>
<td>6.87 (3.62)</td>
<td>6.34 (3.31)</td>
<td>–0.53 (−1.25 to 0.19)</td>
</tr>
</tbody>
</table>

**Subset enrolled ≤24 h after first symptom**

| Participants, n | 80 | 97 | 79 | 95 | – |
| Median global severity (95% CI) | 221 (177 to 277) | 177 (140 to 213) | 199 (162 to 259) | 196 (160 to 250) | −3.0 (−51.5 to 49.2) |
| Mean global severity (SD) | 281 (226) | 250 (218) | 257 (207) | 246 (186) | −11.0 (−69.8 to 47.8) |
| Adjusted global severity (95% CI)* | 10.6 (9.7 to 11.6) | 10.1 (9.3 to 10.8) | 9.7 (8.6 to 10.7) | 10.1 (9.1 to 11.1) | 0.41 (−1.83 to 1.03) |
| Median duration (95% CI), d | 6.66 (6.13 to 7.30) | 6.15 (5.06 to 7.00) | 6.38 (4.78 to 7.37) | 6.07 (4.98 to 6.68) | −0.31 (−1.13 to 1.10) |
| Mean duration (SD), d | 6.83 (3.23) | 6.62 (3.47) | 6.67 (3.52) | 6.47 (3.31) | −0.20 (−1.22 to 0.82) |

* Results from a general linear model, controlled for duration of symptoms before enrollment, symptom severity at enrollment, age, sex, ethnicity, education, income, smoking status, physical health, mental health, and factorial allocation to clinician-related visits. Global severity was defined as the area under the time severity curve, with severity assessed by the Wisconsin Upper Respiratory Symptom Survey, short version. Because the distribution of global severity was skewed, Box–Cox transformation was used to better satisfy statistical assumptions.
Echinacea for Treating the Common Cold

**Median change from day 1 intake to day 3.**

* scale; SF-8 concentration in later years (data not shown). seemed stable over time, with no trends toward lower concentrations and highest results from MediHerb’s 4 laboratory assays (available at www.annals.org) shows the low-range values of known purified ingredients. The laboratories of the manufacturer (MediHerb) and the natural products analysis company Chromadex (Clearwater, Florida) conducted independent phytochemical assays at successive time points from 2004 to 2007. Both companies used high-performance liquid chromatography with reference standards or geographic areas. We also made no attempt to reject the null hypothesis and confidently claim evidence of benefit, data are also insufficient to exclude the possibility of a clinically significant effect. The CIs of between-group differences allow for the possibility of a 24-hour reduction in duration and a 20% reduction in overall severity attributable to echinacea, both of which might be accepted as clinically significant by many persons with the common cold (72–74).

**Discussion**

This dose regimen of the echinacea formulation did not have a large effect on the course of the common cold, compared with either blinded placebo or no pills. However, the trends were in the direction of benefit, amounting to an average half-day reduction in the duration of a weekday-long cold, or an approximate 10% reduction in overall severity. Our previous research (72–74) suggests that few people—no more than 1 in 4—would judge this level of benefit worthwhile, given the cost, inconvenience, and possible adverse effects. Although these results do not allow us to reject the null hypothesis and confidently claim evidence of benefit, data are also insufficient to exclude the possibility of a clinically significant effect. The CIs of between-group differences allow for the possibility of a 24-hour reduction in duration and a 20% reduction in overall severity attributable to echinacea, both of which might be accepted as clinically significant by many persons with the common cold (72–74).

Our study has limitations. Participants were all from Dane County, Wisconsin, and had community-acquired, self-reported colds. The etiologic agents and psychosocial factors that influence colds may be different in other populations or geographic areas. We also made no attempt to base inclusion on viral cause; some of the illnesses represented here may have been caused by influenza or other viruses. Although the age range was wide and both sexes

**Table 3. Secondary Outcomes (Day 3 Assessments)**

<table>
<thead>
<tr>
<th>Biomarker data</th>
<th>No-Pill Group</th>
<th>Unblinded Echinacea Group</th>
<th>Blinded Placebo Group</th>
<th>Blinded Echinacea Group</th>
<th>Between-Blinded Group Differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants, n</td>
<td>164</td>
<td>171</td>
<td>168</td>
<td>170</td>
<td>–</td>
</tr>
<tr>
<td>Median change in IL-8 levels (95% CI), ng/L*</td>
<td>30 (2 to 89)</td>
<td>70 (18 to 134)</td>
<td>39 (12 to 106)</td>
<td>58 (18 to 105)</td>
<td>19.0 (–75.2 to 72.0)</td>
</tr>
<tr>
<td>Median change in neutrophil counts (95% CI), cells/hpf*</td>
<td>1 (–1 to 4)</td>
<td>1 (0 to 4)</td>
<td>1 (–1 to 4)</td>
<td>2 (0 to 5)</td>
<td>1.0 (–4.0 to 3.0)</td>
</tr>
</tbody>
</table>

* hpf = high-power field; IL-8 = interleukin-8; LOT-R = revised Life Orientation Test; PSS-4 = 4-item Cohen Perceived Stress Scale; Ryff PR = Ryff Personal Relationships scale; SF-8 = Medical Outcomes Study Short Form-8; VAS = visual analog scale.

**Table 4. Potential Adverse Effects**

<table>
<thead>
<tr>
<th>Adverse Effect</th>
<th>No-Pill Group (n = 174)</th>
<th>Unblinded Echinacea Group (n = 182)</th>
<th>Blinded Placebo Group (n = 179)</th>
<th>Blinded Echinacea Group (n = 184)</th>
<th>Between-Blinded Group Differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bad taste</td>
<td>–</td>
<td>8.9 (4.7 to 13.1)</td>
<td>9.1 (7.2 to 16.8)</td>
<td>12.4 (7.6 to 17.3)</td>
<td>3.3 (–3.3 to 10.1)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>5.4 (2.0 to 8.9)</td>
<td>9.4 (5.2 to 13.7)</td>
<td>12.0 (7.2 to 16.8)</td>
<td>9.6 (5.3 to 13.9)</td>
<td>–2.4 (–8.7 to 4.90)</td>
</tr>
<tr>
<td>Headache</td>
<td>62.1 (54.7 to 69.4)</td>
<td>47.8 (40.5 to 55.1)</td>
<td>49.1 (41.7 to 56.5)</td>
<td>46.3 (39.0 to 53.7)</td>
<td>–2.8 (–12.7 to 7.18)</td>
</tr>
<tr>
<td>Nausea</td>
<td>10.2 (5.6 to 14.9)</td>
<td>6.7 (3.0 to 10.3)</td>
<td>12.6 (7.7 to 17.5)</td>
<td>15.8 (10.4 to 21.2)</td>
<td>3.2 (–4.17 to 10.8)</td>
</tr>
<tr>
<td>Rash</td>
<td>1.8 (0.0 to 3.6)</td>
<td>1.7 (0.0 to 3.5)</td>
<td>1.1 (0.0 to 2.7)</td>
<td>1.1 (0.0 to 2.7)</td>
<td>0.0 (–3.08 to 3.01)</td>
</tr>
<tr>
<td>Stomach upset</td>
<td>16.3 (10.7 to 21.9)</td>
<td>13.3 (8.4 to 18.3)</td>
<td>12.0 (7.2 to 16.8)</td>
<td>14.7 (9.5 to 19.9)</td>
<td>2.7 (–4.04 to 10.7)</td>
</tr>
</tbody>
</table>

* Values are the percentages of participants (95% CI) who indicated at their exit interview that they had this symptom at some time during their illness.
were well represented, racial and ethnic diversity was limited. In addition, this trial may have been underpowered. Our power estimates used existing data from that time, which showed a 0.70 ratio of standard deviation to mean. Equivalent data from this trial provide a ratio of 0.80.

Looking at data gathered from 1999 to 2008, we now conclude that a conventional randomized, controlled trial would need slightly more than 200 people in each of 2 groups to have 80% power to detect a 20% difference in global severity, using the WURSS-21 (61). A trial that used illness duration or prespecified day-to-day change as a primary outcome could be smaller, but the results would be less meaningful. We also note that our results were obtained with only 1 of many possible types of echinacea formulations. Although the dosing and array of phytochemical constituents that we used (Appendix Table 1) are reasonably representative of currently available echinacea preparations, a substantively different formulation could give substantially different results. Finally, because randomized trials provide results in terms of group averages, they may obscure benefits (or harms) for individuals or subgroups.

In conclusion, the pharmacologic activity of echinacea probably has only a small beneficial effect in persons with the common cold. Our interpretation comes not only from the trends observed in this trial but also from a reasonably substantial body of scientific evidence, including positive results from several reported trials and some cautiously optimistic meta-analyses (50–53). Any underlying benefit of echinacea is not large and was not demonstrated by our results. Individual choices about whether to use echinacea to treat the common cold should be guided by personal health values and preferences, as well as by the limited evidence available.

From the University of Wisconsin, Madison, Wisconsin, and MedHerb, Warwick, Queensland, and University of New England, Armidale, New South Wales, Australia.

**References**


Echinacea for Treating the Common Cold

245-54.


----

VISIT THE ANNALS BOOTH AT SUBSPECIALTY MEETINGS

Annals staff will be at these upcoming meetings:

American College of Cardiology, New Orleans, 3–5 April 2011
Digestive Disease Week, Chicago, 8–10 May 2011
American Society of Clinical Oncology, Chicago, 3–6 June 2011

Stop by the ACP/Annals booth and register to be a peer reviewer or discuss your thoughts for submissions or topic coverage with Annals staff.
Appendix Figure. Study flow diagram.

Assessed for eligibility (n = 3321)

Consented and enrolled (n = 719)

Randomly assigned (n = 719)

Allocated to no pill (n = 174)
  Received allocated intervention (n = 174)
  Withdrew from study (n = 1)
  Analyzed (n = 173)

Allocated to blinded placebo (n = 179)
  Received allocated intervention (n = 179)
  Withdrew from study (n = 2)
  Lost to follow-up (n = 1)
  Analyzed (n = 176)

Allocated to blinded echinacea (n = 184)
  Received allocated intervention (n = 184)
  Withdrew from study (n = 1)
  Analyzed (n = 183)

Allocated to unblinded echinacea (n = 182)
  Received allocated intervention (n = 182)
  Lost to follow-up (n = 1)
  Analyzed (n = 181)

Excluded (n = 2602)
  Enrolled in other studies: 914
  Duration of symptoms ≥ 36 h: 885
  Insufficient or unclear cold symptoms: 143
  Symptoms suggesting asthma or allergies: 53
  Other or undocumented: 362

Appendix Table. Phytochemical Composition of Echinacea Tablets*

<table>
<thead>
<tr>
<th>Component</th>
<th>Range in MediHerb Assays, mg/tablet</th>
<th>Range in Chromadex Assays, mg/tablet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caftaric acid</td>
<td>1.85–2.43</td>
<td>1.32–2.14</td>
</tr>
<tr>
<td>Chlorogenic acid</td>
<td>NA</td>
<td>0.07–0.38</td>
</tr>
<tr>
<td>Cynarin</td>
<td>NA</td>
<td>0.35–0.83</td>
</tr>
<tr>
<td>Cichoric acid</td>
<td>7.63–10.04</td>
<td>5.13–6.84</td>
</tr>
<tr>
<td>Echinacoside</td>
<td>4.09–5.30</td>
<td>3.80–3.87</td>
</tr>
<tr>
<td>Total phenolics†</td>
<td>12.98–16.87</td>
<td>9.80–13.30</td>
</tr>
<tr>
<td>DDYIA†</td>
<td>NA</td>
<td>0.52–2.05</td>
</tr>
<tr>
<td>DDIA†</td>
<td>NA</td>
<td>0.15–0.16</td>
</tr>
<tr>
<td>DZTIA†</td>
<td>NA</td>
<td>1.05–10.2</td>
</tr>
<tr>
<td>Total 2-enes</td>
<td>0.54–0.89</td>
<td>NA</td>
</tr>
<tr>
<td>Total 2,4 dienes</td>
<td>2.48–3.57</td>
<td>NA</td>
</tr>
<tr>
<td>Total alkamides</td>
<td>3.06–4.46</td>
<td>1.73–12.4</td>
</tr>
</tbody>
</table>

DDIA = dodeca-2(E),4(E)-dienoic acid isobutylamide; DDYIA = dodec-2-ene-8,10-dienoic acid isobutylamide; DZTIA = dodeca-2(E),4(E),8(Z),10(Z)-tetraenoic acid isobutylamide; NA = not analyzed.
* Phytochemical content was analyzed independently in 4 assays by MediHerb (Warwick, Queensland, Australia) and 3 assays by Chromadex (Clearwater, Florida) between 2004 and 2007. No time trends were seen.
† Cichoric acid derivatives.
‡ Specific alkamides measured by Chromadex.